Math 201

Quiz \#1, March 10, 2008

1. (20 pts.) Evaluate each of the following limits

$$
\text { (a) } \lim _{n \rightarrow \infty}\left(\frac{4 n-3}{4 n+3}\right)^{n+1}, \text { (b) } \lim _{n \rightarrow \infty} \frac{n^{\frac{1}{n}} \sin \left(3+n^{5}\right)}{\sqrt{n}} \text {, (c) } \lim _{n \rightarrow \infty} \frac{\frac{1}{1}+\frac{1}{2}+\cdots+\frac{3}{n^{2}}}{\ln n} \text {, }
$$

2. (20 pts .) Decide the convergence or divergence of each of the following series:
(a) $\sum_{n=1}^{\infty} \frac{3+\cos \left(n^{100}\right)}{n \sqrt{n}}$,
(b) $\sum_{n=1}^{\infty}\left[\frac{1}{n^{1 / 3}}-\sin \left(\frac{1}{n^{1 / 3}}\right)\right]$,
, (c) $\sum_{n=1}^{\infty}(\operatorname{In} n) \sin \left(\frac{1}{n^{1.3}}\right)$.
3. (20 pts.) Find s_{n} the $n^{\text {lh }}$ partial sum of the series

$$
\sum_{k=1}^{\infty}\left\{\frac{1}{\sqrt{2 k-1}}-\frac{1}{\sqrt{2 k+1}}\right\}
$$

and then find the sum s of the series.
4. (20 pts.) Consider the series

$$
\sum_{n=1}^{\infty} \frac{\ln n}{n}\left(\frac{2 x-3}{4}\right)^{n}
$$

Find all values of x for which the series is convergent, distinguishing between absolute and conditional convergence.
5. (20 pts.) Let $f(x)=\ln \left(x^{2}+5 x+4\right)$. Find the Taylor series expansion of f about the point $a=1$, and then, use this series, to find $f^{(n)}(1)$ for $n=0,1,2,3, \ldots$ Caution: The required expansion is about $a=1$.

